肿瘤(癌症)患者之家
首页
癌症知识
肿瘤中医药治疗
肿瘤药膳
肿瘤治疗技术
前沿资讯
登录/注册
VIP特权

文章目录

基于加权基因共表达网络分析的乳腺癌发病机制鉴定

Identification of breast cancer mechanism based on weighted gene coexpression network analysis 

原文发布日期:2017-08-11 

英文摘要:

摘要翻译:

原文链接:

文章:

基于加权基因共表达网络分析的乳腺癌发病机制鉴定

Identification of breast cancer mechanism based on weighted gene coexpression network analysis 

原文发布日期:2017-08-11 

英文摘要:

Our gene expression-profiling analysis aimed to explain the mechanism of breast cancer development by identifying key pathways and constructing networks of related transcription factors (TFs) and microRNAs (miRNAs) in breast cancer tissues. Gene expression profiles of normal and breast cancer tissues were downloaded to identify differentially expressed genes (DEGs). Coexpression modules were explored using weighted gene coexpression network analysis (WGCNA). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to discover the enriched functionally associated gene groups and define pathways in breast cancer, respectively. miRNAs-DEGs and TF-DEG regulatory networks were constructed using Cytoscape. CDK6(cyclin-dependent kinase), miR-124, EGF(epidermal growth factor) and NF-κB(nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) expression was also analyzed using real-time quantitative PCR. Totally, 7713 DEGs were identified for WGCNA. The results revealed that 1388 upregulated DEGs were associated with protein transport, protein localization and organic substance transport, whereas 1819 downregulated DEGs were associated with cancer and Wnt signaling pathways. Five miRNAs (miR-760, miR-1276, miR-124, miR-124-3p and miR-506-3p) with a degree of ⩾15 and one important TF (NF-κB) were identified in miRNA and TF regulatory networks. CDK6 mRNA and miR-124 expression was significantly reduced and EGF mRNA expression was clearly enhanced in cancer tissues compared with those in normal breast tissues. The CDK6 gene could be regulated by miR-124, which is involved in Wnt signaling and cancer pathways. NF-κB might initiate the breast cancer pathway by targeting EGF in human breast cancer tissues. This putative information on regulatory networks in breast cancer will be beneficial for future researches on mechanisms underlying its development. 

摘要翻译:

我们的基因表达谱分析旨在通过识别乳腺癌组织中的关键通路,并构建相关转录因子(TFs)和微小RNA(miRNAs)调控网络,以阐释乳腺癌发展的机制。研究下载了正常与乳腺癌组织的基因表达谱数据以筛选差异表达基因(DEGs),采用加权基因共表达网络分析(WGCNA)探索共表达模块,通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析分别识别功能相关的富集基因群和界定乳腺癌相关通路。利用Cytoscape构建了miRNA-DEG和TF-DEG调控网络,同时采用实时定量PCR技术分析了CDK6(细胞周期蛋白依赖性激酶)、miR-124、EGF(表皮生长因子)及NF-κB(核因子κB)的表达水平。研究共筛选出7713个DEGs用于WGCNA分析。结果显示:1388个上调DEGs与蛋白质转运、蛋白质定位和有机物质运输相关,而1819个下调DEGs与癌症及Wnt信号通路相关。在miRNA和TF调控网络中,识别出5个连接度≥15的miRNAs(miR-760、miR-1276、miR-124、miR-124-3p和miR-506-3p)及一个重要转录因子(NF-κB)。与正常乳腺组织相比,癌组织中CDK6 mRNA和miR-124表达显著降低,而EGF mRNA表达明显升高。CDK6基因可能受miR-124调控,该基因参与Wnt信号通路和癌症通路;NF-κB可能通过靶向EGF激活乳腺癌通路。这些关于乳腺癌调控网络的推定信息将为未来研究其发展机制提供重要参考。

原文链接:

Identification of breast cancer mechanism based on weighted gene coexpression network analysis 

相关文章

文章:肿瘤抗原优先来源于黑色素瘤和非小细胞肺癌中未突变的基因组序列
文章:年龄相关的烟酰胺腺嘌呤二核苷酸下降驱动CAR-T细胞衰竭
文章:MCSP+转移创始细胞在人类黑色素瘤转移定植早期激活免疫抑制
文章:脂质纳米颗粒递送合成抗原使实体瘤对car介导的细胞毒性敏感
文章:食管癌新辅助治疗中的进化和免疫微环境动力学
文章:CHD1缺失重编程srebp2驱动的胆固醇合成,在spop突变的前列腺肿瘤中促进雄激素响应性生长和去势抵抗
文章:对TIL细胞治疗无反应的转移性非小细胞肺癌患者的T细胞和新抗原保留受损的时间序列分析
文章:策展的癌细胞图谱提供了单细胞分辨率的肿瘤的全面表征
文章:以人群为基础的胶质瘤分子景观分析在青少年和年轻人揭示胶质瘤形成的见解
文章:肿瘤细胞上的PILRα与T细胞表面蛋白CD99相互作用抑制抗肿瘤免疫

……