肿瘤(癌症)患者之家
首页
癌症知识
肿瘤中医药治疗
肿瘤药膳
肿瘤治疗技术
前沿资讯
登录/注册
VIP特权

文章目录

癌症纳米技术:机遇与挑战

Cancer nanotechnology: opportunities and challenges

原文发布日期:2005-03-01

DOI: 10.1038/nrc1566

类型: Review Article

开放获取: 否

要点:

要点翻译:

英文摘要:

摘要翻译: 

原文链接:

文章:

癌症纳米技术:机遇与挑战

Cancer nanotechnology: opportunities and challenges

原文发布日期:2005-03-01

DOI: 10.1038/nrc1566

类型: Review Article

开放获取: 否

 

要点:

  1. Nanotechnology concerns the study of devices that are themselves or have essential components in the 1–1,000 nm dimensional range (that is, from a few atoms to subcellular size).
  2. Two main subfields of nanotechnology are nanovectors — for the administration of targeted therapeutic and imaging moieties — and the precise patterning of surfaces.
  3. Nanotechnology is no stranger to oncology: liposomes are early examples of cancer nanotherapeutics, and nanoscale-targeted magnetic resonance imaging contrast agents illustrate the application of nanotechnology to diagnostics.
  4. Photolithography is a light-directed surface-patterning method, which is the technological foundation of microarrays and the surface-enhanced laser desorption/ionization time-of-flight approach to proteomics. Nanoscale resolution is now possible with photolithography, and will give rise to instruments that can pack a much greater density of information than current biochips.
  5. The ability of nanotechnology to yield advances in early detection, diagnostics, prognostics and the selection of therapeutic strategies is predicated based on its ability to 'multiplex' — that is, to detect a broad multiplicity of molecular signals and biomarkers in real time. Prime examples of multiplexing detection nanotechnologies are arrays of nanocantilevers, nanowires and nanotubes.
  6. Multifunctionality is the fundamental advantage of nanovectors for the cancer-specific delivery of therapeutic and imaging agents. Primary functionalities include the avoidance of biobarriers and biomarker-based targeting, and the reporting of therapeutic efficacy.
  7. Thousands of nanovectors are currently under study. By systematically combining them with preferred therapeutic and biological targeting moieties it might be possible to obtain a very large number of novel, personalized therapeutic agents.
  8. Novel mathematical models are needed, in order to secure the full import of nanotechnology into oncology.

 

要点翻译:

  1. 纳米技术涉及对设备本身或其关键组件在1-1000纳米尺度范围(即从几个原子到亚细胞大小)的研究。
  2. 纳米技术的两个主要子领域是纳米载体(用于靶向治疗和成像分子的递送)以及表面的精确图案化。
  3. 纳米技术在肿瘤学领域并不陌生:脂质体是癌症纳米疗法的早期实例,而纳米级靶向磁共振成像对比剂则说明了纳米技术在诊断中的应用。
  4. 光刻技术是一种光导向的表面图案化方法,它是微阵列和表面增强激光解吸/电离飞行时间蛋白质组学方法的技术基础。光刻技术现已实现纳米级分辨率,并将催生能够比当前生物芯片承载更高信息密度的仪器。
  5. 纳米技术能够在早期检测、诊断、预后和治疗策略选择方面取得进展,其基础在于其"多重分析"能力——即实时检测多种分子信号和生物标志物。多重分析检测纳米技术的主要实例包括纳米悬臂梁阵列、纳米线和纳米管。
  6. 多功能性是纳米载体在癌症特异性递送治疗和成像剂方面的基本优势。主要功能包括规避生物屏障、基于生物标志物的靶向以及治疗效果报告。
  7. 目前有数千种纳米载体正在研究中。通过将其与优选的治疗和生物靶向分子系统结合,或许能够获得大量新型的个性化治疗剂。
  8. 需要建立新的数学模型,以充分发挥纳米技术在肿瘤学中的潜力。

 

英文摘要:

Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.

摘要翻译: 

纳米技术是一个多学科领域,涵盖了源自工程学、生物学、物理学和化学的庞大而多样的装置。这些装置包括用于靶向递送抗癌药物和成像对比剂的纳米载体。纳米线和纳米悬臂阵列是正在开发的、用于从体液中早期检测癌前和恶性病变的主要方法之一。这些及其他纳米装置可为抗癌斗争提供重大突破。

原文链接:

Cancer nanotechnology: opportunities and challenges

相关文章

文章:肿瘤抗原优先来源于黑色素瘤和非小细胞肺癌中未突变的基因组序列
文章:年龄相关的烟酰胺腺嘌呤二核苷酸下降驱动CAR-T细胞衰竭
文章:MCSP+转移创始细胞在人类黑色素瘤转移定植早期激活免疫抑制
文章:脂质纳米颗粒递送合成抗原使实体瘤对car介导的细胞毒性敏感
文章:食管癌新辅助治疗中的进化和免疫微环境动力学
文章:CHD1缺失重编程srebp2驱动的胆固醇合成,在spop突变的前列腺肿瘤中促进雄激素响应性生长和去势抵抗
文章:对TIL细胞治疗无反应的转移性非小细胞肺癌患者的T细胞和新抗原保留受损的时间序列分析
文章:策展的癌细胞图谱提供了单细胞分辨率的肿瘤的全面表征
文章:以人群为基础的胶质瘤分子景观分析在青少年和年轻人揭示胶质瘤形成的见解
文章:肿瘤细胞上的PILRα与T细胞表面蛋白CD99相互作用抑制抗肿瘤免疫

……